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Rationale

No Free Lunch thm: There is no algorithm that is 
always the most accurate
Generate a group of base-learners which when 
combined has higher accuracy
Different learners use different

Algorithms
Hyperparameters
Representations (Modalities)
Training sets
Subproblems
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Voting

Linear combination

Classification
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Bayesian perspective:

If dj are iid 

Bias does not change, variance decreases by L
Average over randomness
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Bagging 

Use bootstrapping to generate L training sets and 
train one base-learner with each (Breiman, 1996)
Draw L training sets at random with replacement. 
Use voting (Average or median with regression)
Unstable algorithms profit from bagging
Unstable algorithms: if small changes in the 
training set causes large difference in the generated 
learner: the algorithm has high variance. E.g., 
decision trees, multilayer perceptrons.
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Boosting

In bagging: generating complementary base-learner 
is left to chance and to the unstability of the 
learning methods
In Boosting: actively try to generate complementary 
base-learner
How: by training the next learner based on the 
mistakes of previous learners.
Schapire 1990: combine three weak learners to 
generate a strong learner.
Weak learner: error probability less than 1/2 
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AdaBoost
Adaptive 
Boosting:
Generate a 
sequence of 
base-
learners each 
focusing on 
previous 
one’s errors
(Freund and 
Schapire, 
1996)
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AdaBoost

AdaBoost works because it increases the margin at 
each step as the sample probabilities change
Not all algorithms will benefit from Boosting
Base-learner has to be simple and  not accurate 
(high variance)
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Mixture of Experts

Voting where weights are input-dependent (gating)

(Jacobs et al., 1991)
Experts or gating 
can be nonlinear
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Mixture of Experts

In RBF, each local fit is 
a constant, wih, second 
layer weight
In MoE, each local fit is 
a linear function of x, a 
local expert:

(Jacobs et al., 1991)
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MoE as Models Combined

Radial gating:

Softmax gating:
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Stacking

Combiner f () is 
another learner 
(Wolpert, 1992)
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Cascading

Use dj only if 
preceding ones are 
not confident

Cascade learners in 
order of complexity


